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I N H O M O G E N E O U S  I N C L U S I O N  IN  A N  A N I S O T R O P I C  

E L A S T I C  M E D I U M  

G. N. Mirenkova and 1~. G. Sosnina UDC 539.219.1 

We solve the three-dimensional problem of the stress and strain distribution inside and on the surface of an 

inhomogeneous inclusion in an anisotropic elastic medium and the interaction of an inhomogeneous inclusion with an external 

field. A distinction is made between an inlaomogeneity, inclusion, and inhomogeneous inclusion. An inlaomogeneity is taken 

to mean a region inside which the plastic constants are different from those of the medium; an inclusion is constructed to be 

a region with the same elastic properties as the medium, but has undergone some changes and is thus a source of  internal 

stresses in the medium; and inhomogeneous inclusion is taken to mean a region with the properties of  an inhomogeneity and 

an inclusion, simultaneously. 

Below, inhomogeneous inclusion means a region, filled by material under pressure, whose elastic properties are 

different from those of the medium. The pressure is modeled by a layer of  bulk forces distributed along the boundary of the 

region. At the same time an external stress field acts on the medium. 

1. We consider a three-dimensional boundless anisotropic elastic medium with a region V, which is filled under 

pressure with a material having different elastic properties than does the medium. The tensor c~#X"(x) of the elastic moduli 

of the mediunl with an inhomogeneous inclusion is written as 

c(x) = c o + clV(x), (1) 

where x = (x 1 , x 2, x 3) is a point of the medium; V(x) is a characteristic function of the region occupied by the inclusion (V(x) 

= 1, x E V; V(x) = 0, x ~ V); c 0 is the tensor of the elastic constants of the homogeneous medium; and c 1 i s a constant 

tensor characterizing the change in the elastic constants inside the inclusion. For a strip c 1 = - c  0 and for an absolutely rigid 

inclusion c 1 --- oo. By qC~(x) we denote the layer of bulk forces distributed along the surface of the inhomogeneous inclusion 

and modeling the pressure under which the region was filled. We set 

q~(x)  = fvn~(s). (1.1) 

Here pa~ = p~a is a given tensor; n = (n 1, n 2, n3) is a unit vector normal to the surface S of the inhomogeneous inclusion; 
and ~(S) is the Dirac di function, concentration on the surface. 

Suppose that at the same time an external stress field a0a#(x ) acts on the medium. External, as usual, here means the 

field that would have been present in the homogeneous medium under the action of external forces q0a(x). The forces q0 are 
assumed not to contain a singularity of  the type of a simple layer and a double layer. It is further assumed that the ordinary 

continuity condition for displacements ua(x) and for the stress vector ana = oa#n# is satisfied at the boundary of the 
inhomogeneous inclusion [1]. 

First we obtain integral equations for determining the strains inside the inhomogeneous inclusion. The displacements 

ua(x ) in the medium with an inhomogeneous inclusion satisfy the equations (written in operator form and constructed as 
generalized functions or distributions) 
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-VcVu = qo + ql, u(x) --, uo(x ) as x --,. o o  

o r  

( L  o + L~)u = qo + q~, Lo = - V q V ,  L~ = - V q V V ,  (1.2) 

where the operators L 0 and L 1 take the conditions at infinity into account; and uo(x) are the displacements in the homogeneous 

medium under the action of  the forces qo- 

Suppose that G O = L 0 -1  is the Green's tensor for the homogeneous medium (GoL 0 = I, I being the identity operator). 

Applying the operator def G O (the operator def corresponds to a symmetrized gradient) to both parts of  Eq. (1.2), we have 

e - dc fGoVC lVVu  = e o + dcfGoqi, 

e = dcfu, e o = defu o. 

By the symmetry of  the tensors of the elastic constants c o and c 1 these equations can be written as 

e + Koc lVe  = r + defGoql, Ko = -defGodef. 

In detailed notation 

(1.3) 

%(x)  + f / < ~  - x')c~'P%(x')dx ' = ~~ + f o c = ~ , . ( x  - x ' ) F ( x ' ) .  (x')dx'. 
v s 

(1.4) 

Here Ga#0(x - x ')  is the kernel of  the Green's operator GO; Ka#xt,(x - x')  = - [a~axGo~,O(x - x ')](~a)(x~, ) is the kernel of 

the operator K0; and (a,/~) denotes symmetrization with respect to indices t~ and/3. 

We assume that the load is distributed uniformly over the surface of the inclusion. In this case the tensor pm in Eq. 

(1.1) is constant and it can be shown that def G0q 1 = K0V p. Indeed, taking the last integral in Eq. (1.4) over parts and taking 

into account the symmetry of  the tensor p and the properties of the ,5 functions concentrated in the region and on the surface 

[2], w e  obta in  

defGoq t = f O(,G~p~,Cx - X ' ) l / " n , , ( x ' ) d x '  = 
$ 

- f o o , ~ , ( x  - x ' ) ~ r ' d x '  = f ~ ( x  - x ' ) l r ' a x '  = roVp. 
I/  I/ 

Equations (1.3) now become 

e + Koc lVe  = e. ,  ~ .  = to + el = eo + KoVP" 

Since by assumption the external forces q0 do not contain singularities of  the type of  simple or double layers, the 

components of  the strain e(x) on S are piecewise continuous. The equations obtained, therefore, are equivalent to the system 

e + + K oc le  + t .  e o e . ,  + + KoP,  e -  (1 .5)  

where the first equation determines the deformation e+ inside the inhomogeneous inclusion and the second determines its 

continuation e -  to the complement ~" of  the region V; K 0 + = VKoV is the constriction of  the operator K o to the region V; 
K o -  = VKoV. The operator solution of  the equation has the form 

§  --I  § 
e § = ( I + K o q )  e .  

or in more symmetric form 

�9 § - 1  + 
e § = (c  o + r q )  o . ,  a .  = a o + a~ = Coeo + coKop. (1.6) 

Comparing the results with [1], we conclude that the problem of determining the strains inside an inhomogeneous 

inclusion in a medium acted upon an external field o o is equivalent to the similar problem for an inhomogeneity acted upon 

by an external field a .  = o 0 + a 1 (a t = c0/K 0+p is the field induced by the inclusion). 
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We note that the relation between an inclusion and an inhomogeneity was first obtained by Eshelby [3] for the case 

when an inclusion and an inhomogeneity are ellipsoidal, the medium and the inhomogeneity are isotropic, and the external field 

is uniform. The analogous problem for the anisotropic case was considered in [4]. 

Equations (1.6) generalize the results of [3, 4] and in closed form establish the reaction between an inhomogeneous 

inclusion of arbitrary shape in an anisotropic medium and an inhomogeneity for an arbitrary exterr~al field. 

2. Suppose now that the region V occupied by the inhomogeneous inclusion is an ellipsoid with semiaxes a 1, a 2, a 3. 

In this case by virtue of  its properties the operator K0 + [5] the inclusion-induced field ~r 1 = c0Ko+p is uniform and 

(71 = % A p ,  

where A is a constant tetravalent tensor, whose components are calculated in terms of the Fourier transform of the Green's 

tensor Go(n) of the medium. By if(n)) we denote the mean value of the function f(n) over the ellipsoid: 

a I a 2 (l 3 Q'(n)) - ~ of(n)p3(n)  d n ,  
t l  

2 2 2 2 .2_2,~-I/2 p(n) = ( a l n  = + a2n 2 + %"3)  �9 

(2.1) 

Integration in (fin)) is carried out over all directions of the unit vector n, i.e., over the surface of the unit sphere. Then 

Z = (K0(n)), /~,,,~,,(n) = In G~i~(n)n ~ 10,~,o~' 
~ ( n )  = lc;tJa"n, na l-t. (2.2) 

The components of the tensors G0(n) and Ko(n) can be calculated in explicit form for any anisotropic medium. They 

were obtained in [1, 6] for the particular cases of isotropic and orthotropic media. We note that the components of the tensor 

A and hence, the inclusion-induced field cr I depend on the geometric parameters of the region V. This dependence is 

concentrated in the scalar weighing factor o(n) from Eq. (2.1), which simplifies the studies and the passages to the limit in the 

cases of a needle, a crack, and a disk. 

We use the results obtained in [1] for an ellipsoidal inhomogeneity to determine the strains inside an ellipsoidal 

inhomogeneous inclusion. 

First we consider the case when the external field a 0 is uniform. Then the total field a .  = a 0 + a 1 is also uniform. 

Since the external uniform field induces a uniform field of stress e + inside V [3, 5, 7], from Eqs. (1.6) we find 

e § = (c  o + c o A c l ) - l a .  = B - I o . ,  

B = c o + coAc I = (c o + coKo(n)ci )  = (B(n)). (2.3) 

As in the case of  an inhomogeneity, the problem thus reduces to one of  turning a constant tetravalent tensor B. 

Suppose now that the external field cr 0 is linear. In [5, 8] the ellipsoidal region was shown to have polynomial 

conservatism: if the external stress field in the neighborhood of V is a polynomial of  degree n, then the strain field induced 

inside V is a polynomial of the same degree. In particular field is a linear form in x, then t + is also a linear form. 

We set aO~a = d : ,~xa ,where  d~a a is a given trivalent tensor. In this case the total field a .  contains linear and uniform 

components a 0 and a 1. Since the first equation in (1.5) is linear in e +, it is equivalent to the system 

" "  } r + K 0 C181 = (71 § 81 + + §  
+ + 81 8 2 �9 

§ + K0 C182 = (70 8 2 

Here el + is the strain caused by the uniform field a 1 induced by the inclusion and g2 + is the strain caused by the linear 

external field a 0. The strain gl + is found from Eq. (2.3), where a, must be replaced by a 1 = c0A p. In accordance with the 

property of  polynomial conservatism of the ellipsoidal region, e2 + can be sought in the form ( e 2 + ) ~  = b ~ x x  x where b ~ x  
is an unknown trivalent tensor related to the given tensor dx ~# by 

1 
Da2b = "~d, D~..~ ~.~ = ~o(n)n/PtU"(n)n,p(n)). 
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Here D~(~,~ is a constant hexavalent tensor, symmetric in pairs of indices e~, X/x, m); a 2 = (ai2(Sij) is a matrix of the third 

order, determined by the semiaxes of the ellipsoid a i (i = 1, 2, 3); ~ij is the Kronecker symbol; and B(n) is the tensor 

introduced in Eq. (2.1). 
In the case of  an external linear field the problem of determining the strains inside an inhomogeneous inclusion reduces 

to rotating two constant tensors, a tetravalent and a hexavalent tensor B and D, i.e., it reduces to a finite number of  algebraic 

operations. We also emphasize that the solution of the problem was obtained in closed form, even though the Green's tensor 
of the anisotropic uniform medium is not known in explicit form. 

If  the strains e+(x) inside the inhomogeneous inclusion are determined, the stresses a(n) on its outer surface under the 

given conditions at the boundary are equal to the stresses on the outer surface of an "equivalent" inhomogeneity and are 
calculated from [1] 

CP(n) = ~ ( n ) ~ .  

In contrast to the case with an inhomogeneity, however, the study of the behavior of stresses on the surface of an 

inhomogeneous inclusion is complicated by the fact that the field a. depends on the geometric parameters of the region occupied 
by the inclusion. 

3. Let us calculate the energy of the interaction of the inhomogeneous inclusion with the external field. We write the 
Green's operator G for a medium with an inhomogeneity in the form [9, 10] 

O = G o - G0VPVGo, (3. I) 

where P is the interaction energy operator, whose kernel is concentrated in the region of inhomogeneity V and for which Kunin 
and Sosnina [9] obtained 

§ - 1  P = - C l ( C  l + C1K~Ci) C,, C z = clV. (3.2) 

If  the operator C1-1 is meaningful, P can be written as 

+ - 1  p = - ( c ?  ` + K ; )  . 

The total elastic erlergy of  the system is 

or in the operator form 
I 

qb = ~qGq, q = % + qt- 

In ,I, we replace G by the expression for it from (3.1) and write the total energy ,I, as two terms 

�9 = O o  + (l:)mt- 

H e r e  ~l, 0 is the self-energy of  the total field induced by the forces q0 and ql in the homogeneous medium; (I)in t is the energy 
of the interaction of  the inhomogeneons inclusion with that total field, 

I 
�9 o = ~ qGoq' 

1 1 1 
~i.t = -- ~ qGoVP~TGoq = "~ t .Pe .  = ~ f f ~.(y)P(y, y ')~.(y ')dydy' .  

We calculate the interaction energy (I)in t by the method proposed in [9] on the basis of  the expansion of  the kernel P(y, 

y ')  of the operator P from Eq. (3.2) in a series in multipoles. Suppose that the field q0 and, therefore, e.  are uniform. Then 
for ,I,. we have the exact formula 

where P0 is already a constant tetravalent tensor, the main term of the expansion of P(y, y') .  If  the inclusion is ellipsoidal, then 
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Po = - vc l (c l  + c , A c l ) - J c l  = - v(c~ t + A)  - l  

(v is the volume of the ellipsoid and A is the constant tensor given in Eq. (2.2)). 
In summary, for an ellipsoidal inhomogeneous inclusion in an external uniform field the problem is solved in explicit 

form for any anisotropic medium and anisotropic inclusion. 
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